Publications

Multi-layer Clustering-based Residual Sparsifying Transform for Low-dose CT Image Reconstruction

Published in March, 2022

In this study, we propose a network-structured sparsifying transform learning approach for X-ray computed tomography (CT), which we refer to as multi-layer clustering-based residual sparsifying transform (MCST) learning. The proposed MCST scheme learns multiple different unitary transforms in each layer by dividing each layer’s input into several classes. We apply the MCST model to low-dose CT (LDCT) reconstruction by deploying the learned MCST model into the regularizer in penalized weighted least squares (PWLS) reconstruction. We conducted LDCT reconstruction experiments on XCAT phantom data and Mayo Clinic data and trained the MCST model with 2 (or 3) layers and with 5 clusters in each layer. The learned transforms in the same layer showed rich features while additional information is extracted from representation residuals. Our simulation results demonstrate that PWLS-MCST achieves better image reconstruction quality than the conventional FBP method and PWLS with edge-preserving (EP) regularizer. It also outperformed recent advanced methods like PWLS with a learned multi-layer residual sparsifying transform prior (MARS) and PWLS with a union of learned transforms (ULTRA), especially for displaying clear edges and preserving subtle details.

Download here

CPSC: Conformal prediction with shrunken centroids for efficient prediction reliability quantification and data augmentation, a case in alternative herbal medicine classification with electronic nose

Published in November, 2021

A new conformal prediction framework with shrunken centroids (CPSC) is proposed. It regularizes the class centroids to attenuate the irrelevant features and shrink the sample space for predictions and reliability quantification. We compared the CPSC with CP based on KNN, SVM, LightGBM, RF on the herbal medicine dataset, with the electronic nose as a case and assessed them in two tasks, off-line prediction and online prediction with data augmentation. The result shows that CPSC reached a significantly higher accuracy with lower computation cost, and with the same credibility output, CPSC generally achieved higher accuracy. The data augmentation process with CPSC robustly manifested a statistically significant improvement in prediction accuracy with different reliability thresholds, and the augmented data were more balanced in classes.

Download here

Multi-layer Residual Sparsifying Transform (MARS) Model for Low-dose CT Image Reconstruction

Published in June, 2021

In this work, we develop a new image reconstruction approach based on a novel multilayer model learned in an unsupervised manner by combining both sparse representations and deep models. The proposed framework extends the classical sparsifying transform model for images to a Multilayer residual sparsifying transform (MARS) model, wherein the transform domain data are jointly sparsified over layers. We investigate the application of MARS models learned from limited regular-dose images for low-dose CT reconstruction using penalized weighted least squares (PWLS) optimization.

Download here